Degrees That Are Not Degrees of Categoricity
نویسندگان
چکیده
A computable structure A is x-computably categorical for some Turing degree x, if for every computable structure B ∼= A there is an isomorphism f : B → A with f ≤T x. A degree x is a degree of categoricity if there is a computable structure A such that A is x-computably categorical, and for all y, if A is y-computably categorical then x ≤T y. We construct a Σ2 set whose degree is not a degree of categoricity. We also demonstrate a large class of degrees that are not degrees of categoricity by showing that every degree of a set which is 2-generic relative to some perfect tree is not a degree of categoricity. Finally, we prove that every noncomputable hyperimmune-free degree is not a degree of categoricity.
منابع مشابه
Degrees of Categoricity and the Hyperarithmetic Hierarchy
We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of Fokina, Kalimullin, and R. Miller to show that for every computable ordinal α, 0 is the degree of categoricity of some computable structure A. We show additionally that for α a computable successor ordinal, every degree 2-c.e. in and above 0 is a degree of categoricity. We further prove that every degree of c...
متن کاملDegrees of categoricity of computable structures
Defining the degree of categoricity of a computable structureM to be the least degree d for whichM is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0 can be so realized, as can the degree 0.
متن کاملFinite Computable Dimension and Degrees of Categoricity
We first give an example of a rigid structure of computable dimension 2 such that the unique isomorphism between two non-computably isomorphic computable copies has Turing degree strictly below 0′′, and not above 0′. This gives a first example of a computable structure with a degree of categoricity that does not belong to an interval of the form [0(α),0(α+ 1)] for any computable ordinal α. We t...
متن کاملCategoricity Spectra for Rigid Structures
For a computable structure M , the categoricity spectrum is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable copies of M . If the spectrum has a least degree, this degree is called the degree of categoricity of M . In this paper we investigate spectra of categoricity for computable rigid structures. In particular, we give examples of rigid structures wi...
متن کاملDisagreement and Degrees of Assertiveness in Service Encounters: Purchase vs Problem-Solving Interactions
This paper examined disagreement in two sets of data in the context of service encounters: problem-solving interactions (doctor-patient communication) and purchase-oriented encounters (pharmacies) from a cross-cultural perspective (Spanish-British English). We proposed assertiveness, a term that refers to both socio-psychological and linguistic features of communication, as a concept that may h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Notre Dame Journal of Formal Logic
دوره 57 شماره
صفحات -
تاریخ انتشار 2016